Challenges in Plasma-based Technology Implementation

from Spin-Off Company and Energy Enterprise

Perspectives for Sustainable Future

Wijaikhum^{1, 2}, D. Boonyawan³ and S. Hunsasuk²

¹InnoPlasCM Co., Ltd., ²Electricity Generating Authority of Thailand (EGAT) ³Plasma and Beam Physics (PBP) Research Facility

EGAT

Inno Plas

Plasma & Beam Physics Research Facility

Nightingale

Compact Air Plasma Jet for Wound Healing

Delivering plasma-medical research prototype to practical use

Preclinical Tests

mile

(Bacterial Inactivation)

Preclinical Tests

(Cell Toxicity)

Plasma did not induce apoptotic cell-death in adult Human Dermal Fibroblast (HDFa) cells

Pilot Clinical Trial (Sub-district Health Promoting Hospital)

Donkaew Community Hospital, Chiang Mai¢

Volunteer with 3-month Diabetic Ulcer

3 Weeks + Debride

10 Weeks

11 Weeks

smaller wounds and closure in week 11

Left foot

Pilot Clinical Trial

(General hospital, 120-500 beds)

Somdej Prasangkharach 17th Hospital, Suphan Buri

Trauma wound (better and ready for graft in 6 weeks)

Diabetic wound (closer in week 5)

Business Model and Market Segmentation

in

Customers	Number	Min out patient/month	Potential Sales	Price/Unit	Revenue @ 10% Penetration	Rental Model (@10%) Revenue/month
Secondary hospital (120-500)	83	10	83 x 4	350,000	11,620,000	
Primary hospital (10-120)	732	5	732 x 2	250,000	36,600,000	
Community hospital (<10)	9800		9800 x 1	150,000	147,000,000	
Household	14,290	ho cor		400 pcm		571,600
		TOTAL			≈ 200,000,000	
	17	SIL				

What's Unique

CAPJ	PlasmaDerm	kINPen	SteriPlas	Bioplasma
Air	Air	Ar/He	Ar/He	Ar/He
₿5/person/month	N/A	N/A	N/A	N/A

Manufacturing Certification by Engineering Production Equipment Medical (EPEM)

PT 1208-50

- Electrical safety test IEC 60601-1 and IEC 60601-1-2
- Software validation IEC 62304
- By Elettra s.r.l. Testing Laboratory Italy.

Compact Air PlasmaCup

Technical Feature	95		
Input Voltage:	220-240 Vac 50/60 Hz.		
Line protection Fuse:	2 x F2AL		
Output RF Frequncy:	Pulsed@1uSec - 93KHz		
Air Flow	11 L/min - max		
Transfer Mode:	Capacitive		
Output Power:	<50 VA. max.		
Power Line Absorption:	0.40 A. max - 80 VA		
Class Protection and Type:	I TYPE B IPX0		
Software: SWPLCP-Rev0			
Mat/LOT: PLCP InnoPlasCM CO.,Ltd 3FL Central Science Laboratory Chiang Mai University Thailand - 50200	2020-6 C		
	A DESCRIPTION OF THE OWNER OF THE		

Manufacturer Certification : ISO 9001: 2015 EN 13485: 2016 Reference Standard : EN 60601-1: 2006 / A11: 2011 / A1:/2013 / A12: 2014 EN 62304:2006/A1:2015 IEC 62304:2006/A1:2015 EN 60601-1-2: 2015

	Test Report
Issued to:	SAFETT
Client's Name:	EPEM S.R.L.
Address:	VIA G. GALLIANO, 2 – 50144 FIRENZE
Item under test:	
Type of item:	COMPACT AIR PLASMA JET
Manufacturer:	INNOPLASCM CO. Ltd
Address:	3FL Central Science Laboratory, Chiang Mai University - 502 Thailand
Model:	PLASMA-CUP
Part number:	PLCP XXXXXX-X
Serial Number:	COMPACT AIR PLASMA JET
Test specification:	EN 62304:2006/A1:2015
	IEC 62304:2006/A1:2015
Type of test:	Safety
Result:	Pass
Tested by:	Doct. Eng. L. Donati
Approved by:	Doct. Eng. L. Spinelli (Firma) or Andre I
Revision:	
Revision:	22/06/2020
Revision: Date of issue: This document may only be r only be admitted against writte	22/06/2020 eproduced as a whole. Partial reproductions or even citations from the same in authorisation issued by ELETTRA s.r.l.
Revision: Date of issue: This document may only be n only be admitted against veritic ELETTRA s.r.l.	22/05/2020 agroaduced as a whole. Partial reproductions or even citations from the same en authorisation issued by ELETTRA s.r.L You Mattravest. 10 Sp010:ELT202.0017 Sp020:ELT202.0017

Nightingale Delivered at Network Hospitals

Lamphun Hospital Collecting data 1 Feb 2021

Sansai Hospital Collecting data 22 Mar 2021

125117

Phrae Hospital Not interested (17 Feb 2021)

MENT

CO2

- Wekings

etter

ITV

EGAT Research Center and Carbon Neutrality

- Establishing EGAT Research Center
- Short-Medium-Long Term Strategies
- Industrial Scale

EGAT

Where Plasma Technology Really Fit In?

Where Plasma ⁻	Technology Really Fit In?	on util
ยุทธศาสตร์ย่อย	กลยุทธ์	แฟนงานหลัก
ยุทธศาสตร์ 1.1 พัฒนาระบบไฟฟ้าปัจจุบันของ กฟผ. เพื่อเพิ่มศักยภาพในการ แข่งขันและความมั่นคง	 เพิ่มประสิทธิภาพและลดต้นทุนในกระบวนการผลิตและส่ง จ่ายไฟฟ้า รวมถึงการบำรุงรักษา ด้วยนวัตกรรมใหม่ พัฒนานวัตกรรม เพื่อเพิ่มประสิทธิภาพการบริหารจัดการ ภายในองค์การ ด้วยเทคโนโลยีดิจิทัล 	 A. แผน Transmission System B. แผน Mae Moh Smart Mining C. แผน Digital Twin D. แผนโครงการ EGAT Onbox E. แผนโครงการ EMO
ยุทธศาสตร์ 1.2 สร้างสรรค์นวัดกรรมเพื่อขยาย โอกาสทางธุรกิจและรองรับภาพ อนาคตของ กฟผ.	 มุ่งพัฒนานวัตกรรมด้านพลังงานหมุนเวียน เพื่อผลิตและ ควบคุมไฟฟ้าอย่างมีประสิทธิภาพ ดอบสนอง Power Consumer Solution มุ่งพัฒนานวัตกรรมระบบยานยนต์ไฟฟ้า สถานีอัตประจุ ไฟฟ้าและระบบกักเก็บพลังงานไฟฟ้า มุ่งพัฒนานวัตกรรมการผลิตไฟฟ้าในอนาคต 	 F. แนน National Energy Trading Platform แผน Virtual Power Rlant H. แผน Grid Modernization ม แผน Microsold J. แผน EV ตัดเนียลง K. แผน Battery E. แผนโรงไฟฟ้า sCO2 M. แผนพรังงาน Hydrogen, BHD
ยุทธศาสตร์ 1.3 เสริมสร้างคุณค่าแก่สังคมและเป็น มิตรต่อสิ่งแวดล้อมด้วยนวัตกรรม	 สร้างมูลค่าและลดปัญหาด้านสิ่งแวดล้อมจากระยบไฟฟ้า ด้วยนวัตกรรม 	 0. แผน EGAT Excellence Center P. แผนโรงไฟฟ้าชุมชน Q. แผน Circular Economy R. แผน Carbon Capture Utilization and Storage (CCUS) ร. แผนโรงไฟฟ้าชุมชนะเคลอนท
	2. พัฒนาคุณภาพชีวิตของสังคมอย่างเป็นระบบและยั่งยืน	T. แผน Bangkruai Green Community U. แผน PM 2.5

EGAT

non Fultur

EGAT Plasma Fusion Long-Term Target

- Aimed for Fusion Power Plant
- Staring point on Thailand Tokamak 1 (China's HT-6M tokamak)
- Collaboration with Thailand Institute of Nuclear Technology (TINT) and Institute of Plasma Physics Chinese Academy Of Sciences (ASIPP)

The Perk

 Plasma Diagnostic and Engineering Systems (F Vacuum, DAQ and operating)

EGAT Plasma Application Medium-Term Target

- Carbon capture, utilization and storage (CCUS) and Hydrogen
- Searching for industrial-scale technologies to remove CO₂ from the flue gas and generated H₂ from EGAT
 resources
- Challenges of emerging plasma technologies on direct and indirect competitors

CO conversions of the water-gas shift reaction for a DBD packed-bed reactor using barium titanate, 3A zeolite and the MOF, HKUST-1 packing by thermal (at 100 C) and plasma activation. (*A Bogaerts et. al., The 2020 plasma catalysis roadmap, J. Phys. D: Appl. Phys. 53 (2020) 443001 (51pp)*)

Comparison of all data from literature for CO₂ splitting in different plasma reactors, illustrating the energy efficiency and the energy cost as a function of conversion (*Bogaerts A and Centi G (2020) Plasma Technology for CO2 Conversion: A Personal Perspective on Prospects and Gaps. Front. Energy Res. 8:111.*)

Plasma Technology for H₂ Production

 Target on small-scale (Distributed) production (100-1500 kg(H₂)/d)

MPS

Gas-soot separator

Dual chanel power meter

Three stub Dire tuner co

Water → cooling

• Currently at $2 kg(H_2)/d$ for plasma tech

Movable

plunger

::

Gas chromatographs

Gas flow control

CO,

PC

Production	Production method	Initial composition	Production	Energy yield	
			rate $g(H2)/h$	$ m g(H_2)/kWh$	
uted) production			Gaseous fuel		
	Conventional steam	$CH_4 + H_2O + air$		60 Established	
	reforming of •			industrial	
asma tech	methane (catalyst)			process	
	Electron beam radiolysis	$CH_4 + H_2O$		3.6	
	Dielectric barrier discharge	$CH_4 + air$	0.13	6.7	
nel • ter	Dielectric barrier	$CH_4 + CO_2$	0.25	5.2	
0	discharge				
Water cooling	Dielectric barrier	$CH_4 + CO_2/H_2O$		0.5	
	discharge				
ボーニー	Spark discharge	$CH_4 + CO_2$	0.4	17.3	
Directional Circulator	Cliding arc	$CH_4 + H_2O + air$		40	
water load	Plasmatron arc	$CH_4 + H_2O + air$		280	
	Metal-cylinder-based	$CH_4 + CO_2 + H_2O$	180	42.9	
	microwave plasma				
	Waveguide supplied	$CH_4 + H_2O$	169	62.8	
Water	resonant-cavity-based				
	microwave plasma				
generator	with catalyst				

Conventional and plasma methods of H_2 production. Comparison of the hydrogen production rates and energy yields. (J Mizeraczyk and M Jasinski, Plasma processing methods for hydrogen production, Eur. Phys. J. Appl. Phys. (2016) 75: 24702)

× 1

Summary

Synositin Synosi Pathways to Plasma Technology Commercialization for Sustainable Future

Spin-Off & Start-Up Company

- Business model
- Funding
- **Convincing Partners**
- Regulation

EGAT Enterprise

Candidate for medium- and long- term strategies Feasibility and Upscaling

sina